LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **STATISTICS**

THIRD SEMESTER – APRIL 2013

ST 3503/3501/3500 - STATISTICAL MATHEMATICS - II

Date: 29/04/2013

Dept. No.

Max.: 100 Marks

Time: 9:00 - 12:00

<u>PART – A</u>

Answer ALL the questions:

- 1. State any two properties of the Riemann integral.
- 2. Write down the properties of probability density function (p.d.f.)
- **3.** State Comparison test for an improper integral of continuous functions.
- 4. Define Beta function and prove the symmetry of Beta function.
- 5. A continuous random variable X has the p.d.f. $f(x) = 3x^2$, $0 \le x \le 1$. Find the value of 'a' such that $P(X \le a) = P(X > a)$. Find the value of 'b' such that P(X > b) = 0.05
- 6. State the conditions under which the Laplace transform of f(t) exists.
- 7. Find the order and degree of the differential equation $y = xy'' + r\sqrt{1 + (y')^2}$.
- 8. Shade the region of integration in $I = \int_{0}^{1} \int_{0}^{x} dy dx$.

9. State Cayley- Hamilton Theorem and give two of its applications.

10. What are the Eigen values of $\begin{bmatrix} 1 & 7 & 5 \\ 0 & 2 & 9 \\ 0 & 0 & 5 \end{bmatrix}$.

<u> PART – B</u>

Answer any FIVE questions:

11. Let f be a continuous real valued function on the closed bounded interval [a,b]. If the maximum value for f is attained at $c \in (a, b)$ and if f'(c) exists, show that f'(c) = 0.

12. If f is a continuous function in the closed bounded interval [a,b] and if $\varphi'(x) = f(x)$, for $a \le x \le b$, then show that $\int_{a}^{b} f(x) dx = \varphi(b) - \varphi(a)$.

13. Prove that the improper integrals

(i)
$$\int_{1}^{\infty} \frac{1}{x} dx$$
 diverges (ii) $\int_{1}^{\infty} \frac{1}{\sqrt{1-x^2}} dx$ absolutely converges.

14. Using Beta and Gamma functions, evaluate (i) $\int_{1}^{2} x (8-x^3)^{1/3} dx$ (ii) $\int_{1}^{\infty} \frac{1}{1+x^4} dx$.

(10 x 2 = 20)

 $(5 \times 8 = 40)$

- 15. Find the m.g.f, mean and variance of the distribution whose pdf is $f(\mathbf{x}) = \begin{cases} k e^{-kx}, & x > 0 \\ 0, & otherwise \end{cases}$. Hence, find mean, variance, μ_3 , μ_4 .
- 16. Solve $(D^2 + 5D + 4) y = x^2 + 7 x + 9$.

17. Evaluate $\iint \frac{x^2 y^2}{x^2 + y^2} dx dy$ over the region between the circles $x^2 + y^2 = a^2$ and $x^2 + y^2 = b^2$

- (b > a) by transforming into polar coordinates.
- 18. Show that for a square matrix,
 - a) '0' is a characteristic root of a matrix if the matrix is singular.
 - b) The characteristic root of a real symmetric matrix are real.
 - c) Every Eigen vector corresponds to a unique Eigen value.

<u>PART – C</u>

 $(2 \times 20 = 40)$

Answer any TWO questions:

19. a) If $f \in \mathbf{R}[\mathbf{a}, \mathbf{b}]$, and $\mathbf{a} < \mathbf{c} < \mathbf{b}$, then show that $f \in \mathbf{R}[\mathbf{a}, \mathbf{c}]$, $f \in \mathbf{R}[\mathbf{c}, \mathbf{b}]$ and that $\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f \cdot \mathbf{c}$

b) State and prove the first fundamental theorem of integral calculus.

- 20. a) The joint pdf of the random variables (X, Y) is f(x, y) = k(x + y), $0 \le x$, $y \le 1$. Find 'k' and Cov(X, Y).
 - **b**) Show that β (m, n) = $\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$.

21. a) If L{f (t)} = F(s), then prove that L $\left\{\frac{1}{t}f(t)\right\} = \int_{s}^{\infty} F(s) ds$ provided the integral exists.

Also Find Laplace transform of $\frac{Sin \ at}{t}$.

- b) Solve $(D^2 4D + 3) y = Sin 3x Cos 2x$.
- 22. a) Verify whether the following system of equations is consistent. If consistent, find the solutions.

$$x - 4y - 3z = -16$$
, $4x - y + 6z = 16$
 $2x + 7y + 12z = 48$, $5x - 5y + 3z = 0$

b) Verify Cayley Hamilton theorem and hence find

 $A^{-1} \quad if \quad A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}.$

\$\$\$\$\$\$\$